NETRESEC Network Security Blog - Tag : PowerShell

rss Google News
,ย 

Open .ETL Files with NetworkMiner and CapLoader

NetTrace.ETL in CapLoader 1.9.3 and NetworkMiner 2.7.2

Windows event tracing .etl files can now be read by NetworkMiner and CapLoader without having to first convert them to .pcap or .pcapng. The ETL support is included in NetworkMiner 2.7.2 and CapLoader 1.9.3, which were both released this morning.

What is an ETL Trace File?

ETL is short for Event Trace Log, which is ETW session data that has been logged to a file. You can, for example, extract EVTX logs from ETL files. But in this blog post we're gonna focus on network traffic that has been captured to an ETL file with a command like:

netsh trace start capture=yes report=no tracefile=packets.etl
...wait while packets are being captured...
netsh trace stop

Pro-tip: You can specify a capture NIC explicitly with "CaptureInterface=<GUID>"

NetworkMiner and CapLoader can also read packets in Pktmon ETL files, which actually are different from those created with netsh. Capturing packets to an ETL file with Pktmon is very simple:

pktmon start --capture --pkt-size 0 -f packets.etl
...wait while packets are being captured...
pktmon stop

Pro-tip: You can specify capture filters with "pktmon filter add"

You can also capture packets to ETL files with PowerShell:

New-NetEventSession -Name sniffer -LocalFilePath C:\packets.etl
Add-NetEventPacketCaptureProvider -SessionName sniffer -TruncationLength 2000
Start-NetEventSession -Name sniffer
...wait while packets are being captured...
Stop-NetEventSession -Name sniffer
Remove-NetEventSession -Name sniffer

Pro-tip: You capture packets on a remote PC by specifying a CimSession

Advantages

The built-in support for ETL files in NetworkMiner and CapLoader makes it easy to work with ETL files. Not only will you no longer need to go through the extra step of converting the ETL file to PCAP using etl2pcapng or Microsoft Message Analyzer (which was retired in 2019), the analysis will also be faster because both CapLoader and NetworkMiner read ETL files faster compared to etl2pcapng and MMA.

Limitations

The primary limitation with NetworkMiner and CapLoader's ETL support is that it only works in Windows. This means that you will not be able to open ETL files when running NetworkMiner in Linux or macOS.

Another limitation is that both NetworkMiner and CapLoader might fail to parse logged packets if the event trace was created on an OS version with an event manifest that is incompatible with the OS version on which the ETL file is opened.

Under the Hood

Both NetworkMiner and CapLoader leverage Windows specific API calls to read packets from ETL files. An ETL file opened in CapLoader first get converted to PcapNG, then CapLoader parses that PcapNG file. NetworkMiner, on the other hand, parses the packets in the ETL file directly to extract artifacts like files, images and parameters. NetworkMiner's approach is both simpler and quicker, but by converting the ETL file to PcapNG CapLoader can utilize its packet indexing feature to rapidly extract any subset of the captured traffic upon request by the user.

CapLoader's approach is also useful for users who are wondering how to open ETL files in Wireshark, since the packets from an ETL file can be opened in Wireshark by dragging the PcapNG file from the CapLoader GUI onto Wireshark.

Drag-and-drop NetTrace.pcapng from CapLoader to Wireshark
Image: NetTrace.etl converted to PcapNG in CapLoader can be drag-and-dropped onto Wireshark.

Additional Updates in NetworkMiner

The ETL support is not the only new feature in NetworkMiner 2.7.2 though. We have also added support for the ERSPAN protocol. The FTP parser has also been improved to support additional commands, such as AUTH (RFC2228).

We've also added a useful little feature to the context menu of the Parameter's tab, which allows users to send extracted parameters to CyberChef (on gchq.github.io) for decoding.

Submit Parameter value from NetworkMiner to CyberChef
Image: Right-clicking a parameter brings up a context menu with "Submit to CyberChef" option.

Additional Updates in CapLoader

The only major improvement in CapLoader 1.9.3, apart from the built-in ETL-to-PcapNG converter, is that the protocol identification speed and precision has been improved. We've also separated the identification of SSL (version 2.0 to 3.0) and TLS (SSL 3.1 and later) as two separate protocols in this version, whereas they previously both were fingerprinted as "SSL".

Credits

We'd like to thank Dick Svensson and Glenn Larsson for their input on reading ETL files. We also want to thank Markus Schewe for recommending us to add ERSPAN support to NetworkMiner!

Posted by Erik Hjelmvik on Tuesday, 02 November 2021 07:15:00 (UTC/GMT)

Tags: #PowerShellโ€‹ #CapLoaderโ€‹ #NetworkMinerโ€‹ #PcapNGโ€‹ #Windowsโ€‹ #Wiresharkโ€‹ #PCAPโ€‹ #CyberChefโ€‹

Share: Facebook ย  Twitter ย  Reddit ย  Hacker News Short URL: https://netresec.com/?b=21B0d0e

,ย 

Remote Packet Dumps from PacketCache

PacketCache logo

This blog post describes how to dump a packet capture (pcap file) on a remote computer, which runs the PacketCache service, and retrieve that pcap file using only PowerShell.

PacketCache is a free Windows service that continously sniffs network traffic on all interfaces (Ethernet, WiFi, 3G, LTE etc) and maintains a cache of the most recent traffic in RAM. This enables incident responders to read PCAP data out of a PC's PacketCache, for example when an IDS or anti-virus alerts on something potentially malicious. Unfortunately, there is no central management tool for PacketCache, which means that the PCAP data has to be dumped locally at the PC that triggered the IDS or AV alert.

There are a few workarounds "hacks" available to solve this problem, but the most elegant solution is to leverage PowerShell Remoting / WinRM in order to trigger a remote PacketCache instance to create a PCAP file and then copy the PCAP file through the same PowerShell session. To make things even simpler we've created a PowerShell script that can be used to download a PCAP file from any machine running PacketCache. Okay, maybe not *any* machine, the script only works on PCs that you have admin credentails for. Nevertheless, here's how you run the script from a PowerShell prompt:

PS C:\> .\ReadRemotePacketCache.ps1 DESKTOP-LT4711 Administrator
[*] Dumping PacketCache at DESKTOP-LT4711
[*] Copying PCAP dump from DESKTOP-LT4711
[*] Remote PacketCache data saved to DESKTOP-LT4711_181112_1337.pcap
PS C:\>

The ReadRemotePacketCache.ps1 script can be downloaded from the PacketCache product page.


Configuring Hosts for PowerShell Remoting

If you have not previously set up your environment for PowerShell remoting, then you will need to follow these steps before invoking the "ReadRemotePacketCache.ps1" script as above.

On the remote PC, start PowerShell as administrator and enable PowerShell remoting with the "Enable-PSRemoting" command as shown here:

PS C:\> Enable-PSRemoting -SkipNetworkProfileCheck -Force
WinRM has been updated to receive requests.
WinRM service type changed successfully.
WinRM service started.

WinRM has been updated for remote management.
WinRM firewall exception enabled.
Configured LocalAccountTokenFilterPolicy to grant administrative rights remotely
to local users.

PS C:\>

Configuring TrustedHosts for Workgroups

You will also need to set up a trust relationship between the local and remote host. If the remote PC is member of an Active Directory domain, then this trust is already in place. However, if you're in a workgroup or the computers are not in the same domain, then you will need to set the TrustedHosts item like this on both the local PC and the remote PC:

PS C:\> Set-Item WSMan:\localhost\Client\TrustedHosts [IP or Hostname of the other PC]
PS C:\> Get-Item WSMan:\localhost\Client\TrustedHosts
PS C:\> Restart-Service WinRM

Note: if you need to dump PacketCache data from several remote hosts, then you can replace the IP/hostname with '*' to trust any PC or supply a comma separated list of individual hostnames or IPs to trust.

If you've configured TrustedHosts correctly, then you should be able to run the "ReadRemotePacketCache.ps1" script as shown previously. However, if the remote PC isn't in TrustedHosts, then you'll most likely get an error message like this:

PS C:\> .\ReadRemotePacketCache.ps1 10.0.13.37 Administrator
New-PSSession : [10.0.13.37] Connecting to remote server 10.0.13.37 failed with the following error message : The WinRM client cannot process the request. If the authentication scheme is different from Kerberos, or if the client computer is not joined to a domain, then HTTPS transport must be used or the destination machine must be added to the TrustedHosts configuration setting. Use winrm.cmd to configure TrustedHosts. Note that computers in the TrustedHosts list might not be authenticated. You can get more information about that by running the following command: winrm help config. For more information, see the about_Remote_Troubleshooting Help topic.

Automating Remote Artifact Collection

With PowerShell remoting in place you're not limited to just dumping packets from a remote PacketCache service, you can also dump the RAM or copy individual files from the remote computer. This comes in handy in order to implement an automated evidence/artifact collection, for example when a high-severity alert is received by your SIEM.

There are frameworks in place that can help with aquisition of memory and files, such as Matthew Green's Invoke-LiveResponse tool, which can dump memory with WinPMEM and leverage PowerForensics to enable remote raw disk access. Some organizations even start sniffing packets at events like this, but this will only capture the traffic from after a potential compromize. This is where PacketCache comes in, since it can allow you to retrieve packets ranging back as far as a couple of days before the alert.


Credential Theft

It is recommended to use unique passwords for each local account with administrator rights. This practice is extra important if you plan to log into a potentially compromized host using administrator credentails, as described in this blog post. You might also want to lock down the local admin accounts even further in order to minimize the consequences of the admin credentials falling into the wrong hands. See Microsoft's articles on "Local Accounts" and "Attractive Accounts for Credential Theft" for more recommendations regarding how to secure local admin accounts.


PacketCache is Free

CC BY-ND PacketCache is free to use, even commercially. It is released under a Creative Commons Attribution-NoDerivatives 4.0 International License, which means that you can copy and redistribute PacketCache in any medium or format for any purpose. You can download PacketCache here:

https://www.netresec.com/?page=PacketCache

The PowerShell script presented in this blog post is also shared under the same CC license and can be downloaded from the PacketCache product page.


Credits

I'd like to thank Dick Svensson for suggesting the use of PowerShell Remoting to read PacketCache data remotely!

Posted by Erik Hjelmvik on Wednesday, 14 November 2018 08:00:00 (UTC/GMT)

Tags: #Netresecโ€‹ #PCAPโ€‹ #PowerShellโ€‹ #PacketCacheโ€‹ #Windowsโ€‹

Share: Facebook ย  Twitter ย  Reddit ย  Hacker News Short URL: https://netresec.com/?b=18B9747

twitter

NETRESEC on Twitter

Follow @netresec on twitter:
ยป twitter.com/netresec