NETRESEC Network Security Blog - Tag : tshark

rss Google News

What is PCAP over IP?

PCAP over IP

PCAP-over-IP is a method for reading a PCAP stream, which contains captured network traffic, through a TCP socket instead of reading the packets from a PCAP file.

A simple way to create a PCAP-over-IP server is to simply read a PCAP file into a netcat listener, like this:

nc -l 57012 < sniffed.pcap

The packets in “sniffed.pcap” can then be read remotely using PCAP-over-IP, for example with tshark like this (replace with the IP of the netcat listener):

nc 57012 | tshark -r -

But there’s an even simpler way to read PCAP-over-IP with Wireshark and tshark, which doesn’t require netcat.

wireshark -k -i TCP@
tshark -i TCP@

The Wireshark name for this input method is “TCP socket” pipe interface, which is available in Linux, Windows and macOS builds of Wireshark as well as tshark.

PCAP-over-IP in Wireshark's Pipe Interfaces

It is also possible to add a PCAP-over-IP interface from Wireshark's GUI. Open Capture/Options, Manage Interfaces, Pipes Tab and then enter a Local Pipe Path such as TCP@ and click OK. This setting will disappear when you close Wireshark though, since pipe settings don't get saved.

Live Remote Sniffing

Sniffed traffic can be read remotely over PCAP-over-IP in real-time simply by forwarding a PCAP stream with captured packets to netcat like this:

tcpdump -U -w - not tcp port 57012 | nc -l 57012
dumpcap -P -f "not tcp port 57012" -w - | nc -l 57012
PCAP-over-IP with tcpdump, netcat and tshark

Tcpdump is not available for Windows, but dumpcap is since it is included with Wireshark.

Note how TCP port 57012 is purposely filtered out using BPF when capturing in order to avoid a snowball effect, where the PCAP-over-IP traffic otherwise gets sniffed and re-transmitted through the PCAP-over-IP stream, which again gets sniffed etc.

A more sophisticated setup would be to let the service listening on TCP port 57012 spawn the sniffer process, like this:

nc.traditional -l -p 57012 -c "tcpdump -U -w - not port 57012"

Or even better, let the listening service reuse port 57012 to allow multiple incoming PCAP-over-IP connections.

socat TCP-LISTEN:57012,reuseaddr,fork EXEC:"tcpdump -U -w - not port 57012"

Reading PCAP-over-IP with NetworkMiner

We added PCAP-over-IP support to NetworkMiner in 2011 as part of NetworkMiner 1.1, which was actually one year before the TCP socket sniffing feature was included in Wireshark.

Live remote sniffing with NetworkMiner 2.7.3 using PCAP-over-IP

Image: Live remote sniffing with NetworkMiner 2.7.3 using PCAP-over-IP

NetworkMiner can also be configured to listen for incoming PCAP-over-IP connections, in which case the sniffer must connect to the machine running NetworkMiner like this:
tcpdump -U -w - not tcp port 57012 | nc 57012

This PCAP-over-IP feature is actually the recommended method for doing real-time analysis of live network traffic when running NetworkMiner in Linux or macOS, because NetworkMiner’s regular sniffing methods are not available on those platforms.

Reading Decrypted TLS Traffic from PolarProxy


One of the most powerful use-cases for PCAP-over-IP is to read decrypted TLS traffic from PolarProxy. When PolarProxy is launched with the argument “--pcapoverip 57012” it starts a listener on TCP port 57012, which listens for incoming connections and pushes a real-time PCAP stream of decrypted TLS traffic to each client that connects. PolarProxy can also make active outgoing PCAP-over-IP connections to a specific IP address and port if the “--pcapoveripconnect <host>:<port>” argument is provided.

In the video PolarProxy in Windows Sandbox I demonstrate how decrypted TLS traffic can be viewed in NetworkMiner in real-time with help of PCAP-over-IP. PolarProxy’s PCAP-over-IP feature can also be used to read decrypted TLS traffic from PolarProxy with Wireshark as well as to send decrypted TLS traffic from PolarProxy to Arkime (aka Moloch).

Replaying PCAP-over-IP to an Interface

There are lots of great network monitoring products and intrusion detection systems that don’t come with a built-in PCAP-over-IP implementation, such as Suricata, Zeek, Security Onion and Packetbeat, just to mention a few. These products would greatly benefit from having access to the decrypted TLS traffic that PolarProxy can provide. Luckily we can use netcat and tcpreplay to replay packets from a PCAP-over-IP stream to a network interface like this:

nc localhost 57012 | tcpreplay -i eth0 -t -

But for permanent installations we recommend creating a dedicated dummy interface, to which the traffic gets replayed and sniffed, and then deploy a systemd service that performs the replay operation. See our blog post Sniffing Decrypted TLS Traffic with Security Onion for an example on how to deploy such a systemd service. In that blog post we show how decrypted TLS traffic from PolarProxy can be replayed to a local interface on a Security Onion machine, which is being monitored by Suricata and Zeek.

Nils Hanke has also compiled a detailed documentation on how decrypted TLS packets from PolarProxy can be replayed to Packetbeat and Suricata with help of tcpreplay.

In these setups netcat and tcpreplay act as a generic glue between a PCAP-over-IP service and tools that can sniff packets on a network interface, but there are a few drawbacks with this approach. One drawback is that tcpreplay requires root privileges in order to replay packets to an interface. Another drawback is that extra complexity is added to the solution and two additional single point of failures are introduced (i.e. netcat and tcpreplay). Finally, replaying packets to a network interface increases the risk of packet drops. We therefore hope to see built-in PCAP-over-IP implementations in more network monitoring solutions in the future!

FAQ for PCAP-over-IP

Q: Why is it called “PCAP-over-IP” and not “PCAP-over-TCP”?

Good question, we actually don’t know since we didn’t come up with the name. But in theory it would probably be feasible to read a PCAP stream over UDP or SCTP as well.

Q: What is the standard port for PCAP-over-IP?

There is no official port registered with IANA for PCAP-over-IP, but we’ve been using TCP 57012 as the default port for PCAP-over-IP since 2011. The Wireshark implementation, on the other hand, uses TCP port 19000 as the default value.

Q: Which software comes with built-in PCAP-over-IP servers or clients?

The ones we know of are: Arkime, NetworkMiner, PolarProxy, tshark and Wireshark. There is also a PCAP-over-IP plugin for Zeek (see update below).

Q: Is there some way to encrypt the PCAP-over-IP transmissions?

Yes, we recommend encrypting PCAP-over-IP sessions with TLS when they are transmitted across a non-trusted network. NetworkMiner’s PCAP-over-IP implementation comes with a “Use SSL” checkbox, which can be used to receive “PCAP-over-TLS”. You can replace netcat with socat or ncat in order to establish a TLS encrypted connection to NetworkMiner.

Q: Is there a tool that can aggregate multiple PCAP-over-IP streams into one?

No, none that we’re aware of. However, multiple PCAP-over-IP streams can be merged into one by specifying multiple PCAP-over-IP interfaces in dumpcap and then forwarding that output to a netcat listener, like this:

dumpcap -i TCP@ -i TCP@ -w - | editcap -F pcap - - | nc -l 57012

Update 2023-04-13

Erich Nahum has published zeek-pcapovertcp-plugin, which brings native PCAP-over-IP support to Zeek.

Erich's plugin can be installed as a zeek package through zkg.

zkg install zeek-pcapovertcp-plugin

After installing the plugin, a command like this reads a PCAP stream from a remote source:

zeek -i pcapovertcp::

Posted by Erik Hjelmvik on Monday, 15 August 2022 08:05:00 (UTC/GMT)

Tags: #PCAP-over-IP#PCAP#tcpdump#Wireshark#tshark#NetworkMiner#PolarProxy#Suricata#Zeek#Arkime#tcpreplay#netcat#ASCII-art

Share: Facebook   Twitter   Reddit   Hacker News Short URL:

Examining an x509 Covert Channel

Jason Reaves gave a talk titled “Malware C2 over x509 certificate exchange” at BSides Springfield 2017, where he demonstrated that the SSL handshake can be abused by malware as a covert command-and-control (C2) channel.

Jason Reaves presenting at BSides Springfield 2017

He got the idea while analyzing the Vawtrak malware after discovering that it read multiple fields in the X.509 certificate provided by the server before proceeding. Jason initially thought these fields were used as a C2 channel, but then realized that Vawtrak performed a variant of certificate pinning in order to discover SSL man-in-the-middle attempts.

Nevertheless, Jason decided to actually implement a proof-of-concept (PoC) that uses the X.509 certificate as a C2 channel. Jason’s code is now available on GitHub along with a PCAP file demonstrating this covert C2 channel. Of course I couldn’t resist having a little look at this PCAP file in NetworkMiner.

The first thing I noticed was that the proof-of-concept PCAP ran the SSL session on TCP 4433, which prevented NetworkMiner from parsing the traffic as SSL. However, I was able to parse the SSL traffic with NetworkMiner Professional just fine thanks to the port-independent-protocol-identification feature (a.k.a Dynamic Port Detection), which made the Pro-version parse TCP 4433 as SSL/TLS.

X.509 certificates extracted from PCAP with NetworkMiner
Image: X.509 certificates extracted from PCAP with NetworkMiner

A “normal” x509 certificate size is usually around 1kB, so certificates that are 11kB should be considered as anomalies. Also, opening one of these .cer files reveals an extremely large value in the Subject Key Identifier field.

X.509 certificate with MZ header in the Subject Key Identifier field

Not only is this field very large, it also starts with the familiar “4D 5A” MZ header sequence.

NetworkMiner additionally parses details from the certificates that it extracts from PCAP files, so the Subject Key Identifier field is actually accessible from within NetworkMiner, as shown in the screenshot below.

Parameters tab in NetworkMiner showing X.509 certificate details

You can also see that NetworkMiner validates the certificate using the local trusted root certificates. Not surprisingly, this certificates is not trusted (certificate valid = FALSE). It would be most unlikely that anyone would manage to include arbitrary data like this in a signed certificate.

Extracting the MZ Binary from the Covert X.509 Channel

Even though NetworkMiner excels at pulling out files from PCAPs, this is definitively an occasion where manual handling is required. Jason’s PoC implementation actually uses a whopping 79 individual certificates in order to transfer this Mimikatz binary, which is 785 kB.

Here’s a tshark oneliner you can use to extract the Mimikatz binary from Jason's example PCAP file.

tshark -r mimikatz_sent.pcap -Y 'ssl.handshake.certificate_length gt 2000' -T fields -e x509ce.SubjectKeyIdentifier -d tcp.port==4433,ssl | tr -d ':\n' | xxd -r -p > mimikatz.exe

Detecting x509 Anomalies

Even though covert channels using x509 certificates isn’t a “thing” (yet?) it’s still a good idea to think about how this type of covert signaling can be detected. Just looking for large Subject Key Identifier fields is probably too specific, since there are other fields and extensions in X.509 that could also be used to transmit data. A better approach would be to alert on certificates larger than, let’s say, 3kB. Multiple certificates can also be chained together in a single TLS handshake certificate record, so it would also make sense to look for handshake records larger than 8kB (rough estimate).

Bro IDS logo

This type of anomaly-centric intrusion detection is typically best done using the Bro IDS, which provides easy programmatic access to the X.509 certificate and SSL handshake.

There will be false positives when alerting on large certificates in this manner, which is why I recommend to also check if the certificates have been signed by a trusted root or not. A certificate that is signed by a trusted root is very unlikely to contain malicious data.

Posted by Erik Hjelmvik on Tuesday, 06 February 2018 12:13:00 (UTC/GMT)

Tags: #malware#C2#SSL#TLS#certificate#NetworkMiner#PCAP#x509#X.509#PIPI#Bro#IDS#tshark

Share: Facebook   Twitter   Reddit   Hacker News Short URL:

BlackNurse Denial of Service Attack

Remember the days back in the 90s when you could cripple someones Internet connection simply by issuing a few PING command like “ping -t [target]”? This type of attack was only successful if the victim was on a dial-up modem connection. However, it turns out that a similar form of ICMP flooding can still be used to perform a denial of service attack; even when the victim is on a gigabit network.

The 90's called and wanted their ICMP flood attack back

BlackNurse logo

Analysts at TDC-SOC-CERT (Security Operations Center of the Danish telecom operator TDC) noticed how a certain type of distributed denial-of-service (DDoS) attacks were more effective than others. The analysts found that a special type of ICMP flooding attack could disrupt the network throughput for some customers, even if the attack was just using a modest bandwidth (less than 20Mbit/s). It turned out that Destination Unreachable ICMP messages (ICMP type 3), such as “port unreachable” (code 3) was consuming significantly more resources on some firewalls compared to the more common ICMP Echo messages associated with the Ping command. The TDC team have dubbed this particular ICMP flooding attack method “BlackNurse”.

TDC's own report about BlackNurse says:

“The BlackNurse attack attracted our attention, because in our anti-DDoS solution we experienced that even though traffic speed and packets per second were very low, this attack could keep our customers' operations down. This even applied to customers with large internet uplinks and large enterprise firewalls in place.”

Cisco ASA firewalls is one product line that can be flooded using the BlackNurse attack. Cisco were informed about the BlackNurse attack in June this year, but they decided to not classify this vulnerability as a security issue. Because of this there is no CVE or other vulnerability number associated with BlackNurse.

Evaluation of BlackNurse Denial-of-Service Attacks

Members of the TDC-SOC-CERT set up a lab network to evaluate how effective ICMP type 3 attacks were compared to other ICMP flooding methods. In this setup they used hping3 to send ICMP floods like this:

  • ICMP net unreachable (ICMP type 3, code 0):
    hping3 --icmp -C 3 -K 0 --flood [target]
  • ICMP port unreachable (ICMP type 3, code 3) a.k.a. “BlackNurse”:
    hping3 --icmp -C 3 -K 3 --flood [target]
  • ICMP Echo (Ping):
    hping3 --icmp -C 8 -K 0 --flood [target]
  • ICMP Echo with code 3:
    hping3 --icmp -C 8 -K 3 --flood [target]

The tests showed that Cisco ASA devices used more CPU resources to process the destination unreachable flood attacks (type 3) compared to the ICMP Echo traffic. As a result of this the firewalls start dropping packets, which should otherwise have been forwarded by the firewall, when hit by a BlackNurse attack. When the packet drops become significant the customer behind the firewall basically drops off the internet.

The tests also showed that a single attacking machine running hping3 could, on its own, produce enough ICMP type 3 code 3 packets to consume pretty much all the firewall's resources. Members of the TDC-SOC-CERT shared a few PCAP files from their tests with me, so that their results could be verified. One set of these PCAP files contained only the attack traffic, where the first part was generated using the following command:

hping3 --icmp -C 3 -K 3 -i u200 [target]

The “-i u200” in the command above instructs hping3 to send one packet every 200 microseconds. This packet rate can be verified simply by reading the PCAP file with a command like this:

tshark -c 10 -r attack_record_00001.pcapng -T fields -e frame.time_relative -e frame.time_delta -e frame.len -e icmp.type -e icmp.code
0.000000000   0.000000000   72   3   3
0.000207000   0.000207000   72   3   3
0.000415000   0.000208000   72   3   3
0.000623000   0.000208000   72   3   3
0.000830000   0.000207000   72   3   3
0.001038000   0.000208000   72   3   3
0.001246000   0.000208000   72   3   3
0.001454000   0.000208000   72   3   3
0.001661000   0.000207000   72   3   3
0.001869000   0.000208000   72   3   3

The tshark output confirms that hping3 sent an ICMP type 3 code 3 (a.k.a. “port unreachable”) packet every 208 microseconds, which amounts to rougly 5000 packets per second (pps) or 2.7 Mbit/s. We can also use the capinfos tool from the wireshark/tshark suite to confirm the packet rate and bandwidth like this:

capinfos attack_record_00001.pcapng
Number of packets:   48 k
File size:           5000 kB
Data size:           3461 kB
Capture duration:    9.999656 seconds
First packet time:   2016-06-08 12:25:19.811508
Last packet time:    2016-06-08 12:25:29.811164
Data byte rate:      346 kBps
Data bit rate:       2769 kbps
Average packet size: 72.00 bytes
Average packet rate: 4808 packets/s

A few minutes later they upped the packet rate, by using the “--flood” argument, instead of the 200 microsecond inter-packet delay, like this:

hping3 --icmp -C 3 -K 3 --flood [target]
capinfos attack_record_00007.pcapng
Number of packets:   3037 k
File size:           315 MB
Data size:           218 MB
Capture duration:    9.999996 seconds
First packet time:   2016-06-08 12:26:19.811324
Last packet time:    2016-06-08 12:26:29.811320
Data byte rate:      21 MBps
Data bit rate:       174 Mbps
Average packet size: 72.00 bytes
Average packet rate: 303 kpackets/s

The capinfos output reveals that hping3 was able to push a whopping 303.000 packets per second (174 Mbit/s), which is way more than what is needed to overload a network device vulnerable to the BlackNurse attack. Unfortunately the PCAP files I got did not contain enough normal Internet background traffic to reliably measure the degradation of the throughput during the denial of service attack, so I had to resort to alternative methods. The approach I found most useful for detecting disruptions in the network traffic was to look at the roundtrip times of TCP packets over time.

BlackNurse RTT Wireshark

The graph above measures the time between a TCP data packet and the ACK response of that data segment (called “tcp.analysis.ack_rtt” in Wireshark). The graph shows that the round trip time only rippled a little due to the 5000 pps BlackNurse attack, but then skyrocketed as a result of the 303 kpps flood. This essentially means that “normal” traffic was was prevented from getting though the firewall until the 303 kpps ICMP flood was stopped. However, also notice that even a sustained attack of just 37 kpps (21 Mbit/s or 27 μs inter-packet delay) can be enough to take a gigabit firewall offline.

Detecting BlackNurse Attacks

TDC-SOC-CERT have released the following SNORT IDS rules for detecting the BlackNurse attack:

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"TDC-SOC - Possible BlackNurse attack from external source "; itype:3; icode:3; detection_filter:track by_dst, count 250, seconds 1; reference:url,; metadata:TDC-SOC-CERT,18032016; priority:3; sid:88000012; rev:1;)

alert icmp $HOME_NET any -> $EXTERNAL_NET any (msg:"TDC-SOC - Possible BlackNurse attack from internal source"; itype:3; icode:3; detection_filter:track by_dst, count 250, seconds 1; reference:url,; metadata:TDC-SOC-CERT,18032016; priority:3; sid:88000013; rev:1;)

Protecting against BlackNurse Attacks

The recommendation from TDC is to deny ICMP type 3 messages sent to the WAN interface of Cisco ASA firewalls in order to prevent the BlackNurse attack. However, before doing so, please read the following excerpt from the Cisco ASA 5500 Series Command Reference:

“We recommend that you grant permission for the ICMP unreachable message type (type 3). Denying ICMP unreachable messages disables ICMP Path MTU discovery, which can halt IPSec and PPTP traffic. See RFC 1195 and RFC 1435 for details about Path MTU Discovery.”

In order to allow Path MTU discovery to function you will need to allow at least ICMP type 3 code 4 packets (fragmentation needed) to be received by the firewall. Unfortunately filtering or rate-limiting on a Cisco ASA does not seem to have an affect against the BlackNurse attack, the CPU max out anyway. Our best recommendation for protecting a Cisco ASA firewall against the BlackNurse attack is therefore to rate-limit incoming ICMP traffic on an upstream router.

Another alternative is to upgrade the Cisco ASA to a more high-end one with multiple CPU cores, since the BlackNurse attack seems to not be as effective on muti-core ASA's. A third mitigation option is to use a firewall from a different vendor than Cisco. However, please note that it's likely that other vendors also have products that are vulnerable to the BlackNurse attack.

To learn more about the BlackNurse attack, visit or download the full BlackNurse report from TDC.

Update November 12, 2016

Devices verified by TDC to be vulnerable to the BlackNurse attack:

  • Cisco ASA 5505, 5506, 5515, 5525 and 5540 (default settings)
  • Cisco ASA 5550 (Legacy) and 5515-X (latest generation)
  • Cisco 897 router
  • Cisco 6500 router (with SUP2T and Netflow v9 on the inbound interface)
  • Fortigate 60c and 100D (even with drop ICMP on). See response from Fortinet.
  • Fortinet v5.4.1 (one CPU consumed)
  • Palo Alto (unless ICMP Flood DoS protection is activated). See advisory from Palo Alto.
  • SonicWall (if misconfigured)
  • Zyxel NWA3560-N (wireless attack from LAN Side)
  • Zyxel Zywall USG50

Update November 17, 2016

There seems to be some confusion/amusement/discussion going on regarding why this attack is called the “BlackNurse”. Also, googling “black nurse” might not be 100 percent safe-for-work, since you risk getting search results with inappropriate videos that have nothing to do with this attack.

The term “BlackNurse”, which has been used within the TDC SOC for some time to denote the “ICMP 3,3” attack, is actually referring to the two guys at the SOC who noticed how surprisingly effective this attack was. One of these guys is a former blacksmith and the other a nurse, which was why a college of theirs jokingly came up with the name “BlackNurse”. However, although it was first intended as a joke, the team decided to call the attack “BlackNurse” even when going public about it.

Posted by Erik Hjelmvik on Thursday, 10 November 2016 07:40:00 (UTC/GMT)

Tags: #tshark

Share: Facebook   Twitter   Reddit   Hacker News Short URL:

X / twitter

NETRESEC on X / Twitter: @netresec


NETRESEC on Mastodon: