NETRESEC Network Security Blog - Tag : JA4

rss

NetworkMiner 3.0 Released

NetworkMiner 3.0

I am very proud to announce the release of NetworkMiner 3.0 today!

This version brings several new protocols as well as user interface improvements to NetworkMiner. We have also made significant changes under the hood, such as altering the default location to where NetworkMiner extracts files from network traffic.

Some of the major changes in this new release are:

  • New protocols: QUIC, CIP (EtherNet/IP), UMAS and Remcos RAT.
  • Improved passive OS fingerprinting.
  • Additional filtering capabilities.
  • User interface adapted for Linux.

Filtering of Displayed Artefacts

A tooltip text is temporarily displayed when a filter is activated. The tooltip shows the number of visible items after the filter is applied. This tooltip can also be shown at a later point by hovering with the mouse over the filter text or the Apply button.

Right-clicking on an item or artefact in any of NetworkMiner’s tabs brings up a context menu. We’ve now added an “Apply as Filter” option to this context menu, which can be used to let NetworkMiner automatically generate a filter based on the clicked item. This feature saves time for the analyst and reduces risk of misspellings.

We have also added a keyword filter to the Credentials tab and updated the image filename filter to ignore case.

Other User Interface Improvements

The File Details window, which shows metadata and contents of an extracted file, now has a “Show as” menu that can be used to preview the contents of a file as ASCII, Hex, Unicode or UTF-8.

Show as ASCII in NetworkMiner File Details

This file details window can now also be accessed directly from the Images tab by right-clicking on a thumbnail of an extracted image.

NetworkMiner 3.0 extracts Maximum Segment Size (MSS) values from TCP handshakes and show them under Host Details for each respective IP address. This value can help with determining if a host is behind a VPN. An MSS value below 1400 indicates that the traffic might have passed through some form of overlay network, such as a tunnel or VPN.

MSS indicating VPN usage in NetworkMiner's Hosts tab
Image: Details for a host communicating through a VPN

Other indicators that can help identify VPN and tunnelled traffic is IP TTL and latency, which NetworkMiner already extracts.

The screenshot above also shows that the operating system was identified as Windows, both with help of p0f as well as based on the client’s web browser user-agent. The user-agent based OS fingerprinting is a new feature that we added in NetworkMiner 3.0. This is a nice complement to the TCP and DHCP based OS fingerprinting features that NetworkMiner already performs. We’ve configured this feature to also detect operating systems of user-agent strings sent over UPnP/SSDP.

User-Agent OS extracted from UPnP traffic
Image: Operating system identified from User-Agent string in UPnP

The text on a few of NetworkMiner’s buttons were not visible on some Linux distros, depending on how much button padding the respective window manager and theme added. Button sizes have therefore been increased in this release to reduce the risk of text not being visible when NetworkMiner is run in Linux.

New Protocol: QUIC

NetworkMiner 3.0 parses initial packets from the QUIC protocol (RFC 9000), which is the UDP based protocol used to transport HTTP/3. The QUIC parser allows NetworkMiner to extract TLS handshakes from UDP 443 traffic, from which the server’s hostname can be read if the client uses the SNI extension. The extracted TLS handshakes from QUIC are also used to generate JA3 and JA4 fingerprints for clients.

Information extracted from QUIC with NetworkMiner
Image: Server hostname and client JA3 and JA4 fingerprints extracted from QUIC

New Protocol: CIP and EtherNet/IP

We added parsers for the industrial control system protocols CIP and EtherNet/IP. The implementation does not cover all of the CIP and EtherNet/IP specifications, instead we focused on extracting device information, such as product vendor, product name, bulletin name, serial number and hostname. Such device information is crucial when performing passive asset identification of PLC’s and other industrial devices on OT/ICS networks, such as in factories and power plants. The CIP parser also supports extraction of tag data from Rockwell's proprietary version of CIP.

Device information extracted from CIP traffic with NetworkMiner
Image: Device information extracted from CIP traffic from a WAGO 750-841 controller and a Schneider Electric M221 PLC

New Protocol: UMAS

A parser for the industrial control system protocol Modbus/TCP was added to NetworkMiner 2.0 back in 2016. In today’s 3.0 release we’ve enhanced the Modbus implementation to also parse out commands from Schneider Electric's proprietary UMAS protocol, which runs on top of Modbus by using the special function code 90 (0x5a). Our implementation unfortunately doesn’t have full coverage of UMAS, since we don’t have a protocol specification for this proprietary protocol. Nevertheless, our implementation recognizes 40 different UMAS commands (aka UMAS function codes) and can extract fields and parameters from at least 6 of them. The parsed UMAS commands can be viewed in NetworkMiner’s Parameters tab.

UMAS Parameters in NetworkMiner

New Protocol: REMCOS C2

We started adding parsers for proprietary malicious Command-and-Control (C2) protocols, like StealC, njRAT, BackConnect and RMS, to NetworkMiner a couple of years ago. These malware C2 and backdoor protocol parsers enable security researchers to study what actions threat actors perform when accessing victim computers or honeypot systems.

We’re continuing on our endeavour of creating parsers for malicious protocol by adding support for the Remcos RAT C2 protocol to NetworkMiner 3.0.

Remcos RAT parameters extracted from C2 network traffic by NetworkMiner
Image: Remcos C2 parameters from PCAP file on tria.ge with NetworkMiner Professional in Linux

Naturally, NetworkMiner’s Remcos parser can’t extract the C2 comms if Remcos uses TLS. Another limitation is that the free version of NetworkMiner is only able to parse Remcos traffic when the C2 server is running on a standard port like TCP 2404. The port-independent-protocol-identification feature in the Professional edition of NetworkMiner, however, identifies and parses Remcos traffic regardless of which port the C2 server listens on (the C2 server in the screenshot above was running on TCP port 1961).

Improved Protocol Parsers

We have also improved several of NetworkMiner’s existing protocol parsers. NetworkMiner’s parser for the trojan/backdoor njRAT (Bladabindi) protocol has, for example, been extended to reassemble full desktop screenshots from njRAT’s Remote Desktop feature.

njRAT Desktop screenshots extracted from network traffic with NetworkMiner
Image: njRAT desktop image extracted from PCAP file on any.run with NetworkMiner Professional in Linux

NetworkMiner’s parser for Modbus has also been extended to support additional function codes and the NTLMSSP parser (for SMB/SMB2) is now better at extracting hostnames to NetworkMiner’s Hosts tab.

Bugs Fixes

A bug in NetworkMiner’s timestamp comparison code previously caused items to be sorted incorrectly when the Timestamp column header was clicked. This bug has now been fixed. We have also fixed a bug relating to extraction of parameters sent in JSON encoded HTTP POST requests.

Breaking Changes

Some of the changes introduced in the 3.0 release might require some users to adapt their workflow. One such change is that the default output path for extracted files and captured packets has changed from NetworkMiner’s directory to %LocalAppData%\NetworkMiner\ in Windows and ~/.local/share/NetworkMiner/ in Linux. This means that you no longer need to add write permissions to the NetworkMiner application directory or subdirectories thereof, since NetworkMiner no longer creates or modifies files there.

Another breaking change is that we have removed the Anomalies tab from the user interface. Windows users can still see alerts by starting NetworkMiner with --filelog, while Linux can use --debug to print debug, warning and error messages to stderr. Use --loglevel warning to suppress info and debug messages.

A change that only affects users of NetworkMiner Professional is that the command line tool NetworkMinerCLI now requires a Corporate License. If you currently have a single-user license, then you will still be able to use the command line tool in your 2.x version of NetworkMiner Professional, but not in the new 3.0 release.

NetworkMiner Professional

There are several improvements in the 3.0 release that only affect users of NetworkMiner Professional. One noteworthy update is that the Pro release has become significantly faster, especially for capture files containing many short TCP sessions. NetworkMiner Professional now saves around two milliseconds in parsing time for every TCP session. This might not sound as much, but it actually makes a huge difference when parsing capture files containing thousands of small TCP sessions.

NetworkMiner’s support for the TLS fingerprinting method JA4 has also been extended even further in the 3.0 release. NetworkMiner Professional now leverages FoxIO’s JA4 database to identify operating systems as well as applications based on client TLS handshake packets.

Other improvement of NetworkMiner Professional include:

  • Network operator and AS number displayed on Hosts tab.
  • File OSINT lookup includes Censys body_hash lookups.
  • IP and domain OSINT lookups added to NetworkMiner’s DNS tab.
  • PcapNG packet comments displayed in the Parameters tab.

Upgrading to Version 3.0

Users who have purchased NetworkMiner Professional can download version 3.0 from our customer portal, or use the “Check for Updates” feature from NetworkMiner's Help menu. Those who instead prefer to use the free and open source version can grab the latest release of NetworkMiner from the official NetworkMiner page.

Posted by Erik Hjelmvik on Friday, 04 April 2025 10:53:00 (UTC/GMT)

Tags: #NetworkMiner#JA3#JA4#njRAT

Short URL: https://netresec.com/?b=254caa9


PolarProxy 1.0.1 Released

PolarProxy 1.0.1

The new release of PolarProxy generates JA4 fingerprints and enables ruleset to match on specific decryption errors, for example to enable fail-open in case the TLS traffic cannot be decrypted and inspected.

JA4 Fingerprints

JA4 fingerprints provide several improvements over its JA3 predecessor. One advantage is that JA4 fingerprints have a human readable segment that allow humans (as well as computers) to instantly see important features in a client handshake, such as the TLS version and whether or not the SNI and ALPN extensions are used. JA4 is also resilient against TLS extension order randomization.

JA4 hash explained. Breakdown of Remcos JA4 hash t13i010400_0f2cb44170f4_5c4c70b73fa0

We added support for rule based matching of JA4 fingerprints in the previous release of PolarProxy. Such a JA4 rule can be used to have PolarProxy take different actions (block, intercept, bypass etc.) based on the JA4 fingerprint of the client’s TLS handshake.

This release additionally includes JA4 fingerprints in the flow metadata that PolarProxy writes to disk when the -f <file> argument is provided.

Flexible Handling of TLS Auth Failures

PolarProxy’s firewall rules now support using TLS authentication error codes as triggers. As an example, the ruleset fail-open.json attempts to inspect (decrypt and re-encrypt) all TLS traffic, except when the client has rejected the server’s certificate at least once during the past 60 seconds. More specifically, it only bypasses decryption if the reason for the rejection was either “bad certificate” or “unknown CA”.

{
  "name": "Inspect TLS with fail open for OpenSSL alerts", "version": "1.0.1", "rules": [
    {
      "active": true,
      "match": { "type": "nontls" },
      "action": { "type": "block" },
      "description": "Block non-TLS traffic"
    },
    {
      "active": true,
      "match": { "type": "decrypt_fail_errorcode", "expression": "0x0A000412", "period": 60, "count": 1 },
      "action": { "type": "bypass" },
      "description": "bad certificate"
    },
    {
      "active": true,
      "match": { "type": "decrypt_fail_errorcode", "expression": "0x0A000418", "period": 60, "count": 1 },
      "action": { "type": "bypass" },
      "description": "unknown CA"
    }
    ],
  "default": {
    "action": { "type": "inspect" },
    "description": "Attempt to inspect TLS traffic"
  }
}
Figure: PolarProxy fail-open.json ruleset

The specific error codes (here 0x0A000412 for “bad certificate” and 0x0A000418 for “unknown CA”) might differ between deployments, since they depend on the underlying TLS library of the PolarProxy machine. The specific values in this example are from a Linux deployment with OpenSSL 3.0.13 installed. Look for the “decrypt_fail_errorcode” messages that PolarProxy prints to stderr to find out what error codes your system is using. You can also run PolarProxy with -v (verbose) or -d (debug) to get even more information about the error codes.

Ruleset Reload on SIGHUP

A PolarProxy ruleset can now be updated on the fly without having to restart PolarProxy. Simply send a SIGHUP signal to PolarProxy, for example pkill -HUP PolarProxy, to have it reload the updated ruleset without affecting sessions that PolarProxy is currently proxying.

If PolarProxy is running as a systemd service, then adding

ExecReload=/bin/kill -HUP $MAINPID
to the unit file allows PolarProxy’s ruleset to be reloaded with:

sudo systemctl reload PolarProxy.service

.NET 8

The .NET version has been bumped from 6 to 8 in the 1.0.1 release, which provides better performance as well as long-term support. We've also bumped the System.Security.Cryptography.Xml library from version 4.5 to 9.0.

Posted by Erik Hjelmvik on Friday, 07 February 2025 10:10:00 (UTC/GMT)

Tags: #PolarProxy#JA4#fail-open

Short URL: https://netresec.com/?b=2523c96


NetworkMiner 2.9 Released

NetworkMiner 2.9

NetworkMiner 2.9 brings several new and improved features to help analysts make sense of network traffic from malware, criminals and industrial control systems. Highlights from this new version include:

  • TZSP support
  • StealC extractor
  • Improved Modbus parser
  • JA4 support
  • GTP decapsulation

Malware Traffic Artifact Extraction

NetworkMiner is a popular tool for extracting artifacts from malware traffic. Such artifacts can be downloaded malware modules, exfiltrated documents and sometimes even screenshots of the infected computer.

Parsers for njRAT and BackConnect (à la IcedID, QakBot and Bazar) traffic was previously added to NetworkMiner. In this release NetworkMiner also gets a parser for StealC, which has quickly become one of the most popular information stealers on Russian-speaking underground forums. The new NetworkMiner 2.9 release extracts screenshots and files that SteakC exfiltrates from the infected machine.

The examples shown below were created by loading a pcap file with StealC traffic from Triage sandbox into NetworkMiner 2.9. NetworkMiner was run in Linux to minimize the risk of accidentally infecting the analysis environment.

Files exfiltrated by StealC

Image: Reassembled system info and documents exfiltrated by StealC to 185.172.128.151

Reassembled screenshot of victim’s desktop sent to StealC C2 server

Image: Reassembled screenshot of victim’s desktop sent to StealC C2 server

NetworkMiner’s VNC and BackConnect VNC parser has also been improved in this release. NetworkMiner’s keylog extraction from VNC now supports lots of keyboard layouts, including Arabic, Cyrillic, Greek, Hebrew, Kana, Korean and Thai. The handling of VNC color profiles has also been improved to convey colors more correctly in screenshots from reassembled VNC and BackConnect VNC traffic. I’d like to thank Brad Duncan and Maxime Thiebaut for their valuable input on this matter!

Another remote management tool that often is misused by hackers and criminals is Remote Manipulator System (RMS) from TektonIT. According to Cyberint’s report Legit remote admin tools turn into threat actors’ tools there are lots of Russian forum posts and even YouTube tutorials showing how to include legitimate RMS components in malware. NetworkMiner now parses RMS’s session setup, which includes information about the client computer as well as the RMS product and version. The screenshot below was created by loading a pcap file from when 3_Рахунок.pdf.exe was executed in JoeSandbox.

Information extracted from RMS traffic

Image: Information extracted from RMS traffic

The country_code number (here 223) also gets converted to a human-readable country (Switzerland) by NetworkMiner, but this country name info is only displayed in the Host Details of the client.

ICS / SCADA

NetworkMiner has supported Modbus/TCP since 2016 (when NetworkMiner 2.0 was released). This Modbus parser has now been updated to display Modbus addresses using the Modicon convention, which explicitly specifies the register type while also signalling to the user that the displayed addresses are one-indexed.

Modbus queries in NetworkMiner

The register types are displayed in parenthesis and should be interpreted as follows:

  • (0)nnnn = Coil
  • (1)nnnn = Discrete input
  • (3)nnnn = Input register
  • (4)nnnn = Holding register

NetworkMiner now also reads Modbus Device Identification messages and displays the reported device info in Host Details. This feature is very handy if you’re building an asset inventory through passive asset discovery (i.e. passively monitoring traffic to identify devices).

Modbus vendor information in NetworkMiner

NetworkMiner 2.9 also supports asset identification for ICS networks that use COTP based protocols, such as Siemens S7 protocol or IEC 61850 MMS, by parsing COTP connection request messages. The identified COTP TSAP names are displayed under Host Details.

NetworkMiner showing a WinCC client and a Siemens SIMATIC device

Image: NetworkMiner showing a WinCC client and a Siemens SIMATIC device

User Interface Improvements

TLS handshake fingerprinting with JA3 was added to NetworkMiner in 2019, but last year John Althouse announced the new JA4+ fingerprint methods. In short JA4+ is a suite of methods designed to fingerprint implementations of a specific set of protocols, including TLS, HTTP and SSH. Most of the fingerprinting methods in the JA4+ suite are patent pending except for the TLS client fingerprinting method JA4, which is an improved version of JA3. NetworkMiner now generates both JA3 and JA4 fingerprints for TLS handshakes. The results from the TLS fingerprinting can be seen in the Parameters tab as well as Host Details. In the example below we’ve loaded TLS traffic to port 8533 on 91.92.251.26 from a Remcos sample on ANY.RUN into NetworkMiner Professional (the free NetworkMiner edition doesn’t parse TLS traffic to non-standard ports).

JA4 hash t13i010400_0f2cb44170f4_5c4c70b73fa0 for Remcos C2 traffic

Image: JA4 hash t13i010400_0f2cb44170f4_5c4c70b73fa0 for Remcos C2 traffic

NetworkMiner has also been improved to extract even more information from HTTP traffic, such as JSON formatted parameters and telemetry data sent to Microsoft by their Device Metadata Retrieval Client (DMRC). We have also improved the DNS extraction, both with regards to DNS TXT labels and Additional Resource Records.

The previous Remcos screenshot displays a latency measurement (0.0935 ms), which is another new feature in this release. This latency value is an estimation of the average timespan from when the host sends a packet until it gets captured by the sniffer. NetworkMiner’s hosts list can be sorted based on the Latency value, whereby local computers and network devices are shown at the top of the list. Another way to achieve similar results is to instead sort the hosts based on “Router Hops Distance”.

NetworkMiner’s user interface has also been improved to make it easier to copy text from the Hosts and Parameters tabs with Ctrl+C or by right-clicking and selecting “Copy …”. The export-to-file function in NetworkMiner Professional now additionally includes data from the Keywords tab.

TZSP Sniffing and Decapsulation

Routers from Mikrotik have a feature called TZSP (short for TaZmen sniffer Protocol), which encapsulates captured traffic into TZSP packets and then transmits them to a streaming server. This feature is similar to PCAP-over-IP and ERSPAN, except TZSP transports the sniffed packets over UDP instead of TCP or GRE.

NetworkMiner now includes a TZSP streaming server, which can receive TZSP encapsulated traffic over a UDP socket. Click “File, Receive TZSP Stream”, select a port (default is 37008) and click “Start” to receive a real-time stream of captured packets from a Mikrotik router. We’ve also added support for TZSP link layer type (DLT_TZSP) pcap files as well as decapsulation of TZSP packets to UDP port 37008. I’d like to thank Jarmo Lahtiranta for proposing this feature!

Speaking of decapsulation – we’ve added a GTP-U parser, which enables NetworkMiner to analyze GPRS traffic from GSM, UMTS, LTE and 5G networks that is transmitted inside a GTP tunnel.

Upgrading to Version 2.9

Users who have purchased NetworkMiner Professional can download version 2.9 from our customer portal, or use the “Check for Updates” feature from NetworkMiner's Help menu. Those who instead prefer to use the free and open source version can grab the latest version of NetworkMiner from the official NetworkMiner page.

Posted by Erik Hjelmvik on Monday, 27 May 2024 09:50:00 (UTC/GMT)

Tags: #NetworkMiner#TZSP#Modbus#JA4#BackConnect#VNC#JSON

Short URL: https://netresec.com/?b=245092b


CapLoader 1.9.6 Released

CapLoader 1.9.6

CapLoader now detects even more malicious protocols and includes several new features such as JA4 fingerprints, API support for sharing IOCs to ThreatFox and OSINT lookups of malware families on Malpedia. The new CapLoader 1.9.6 release also comes with several improvements of the user interface, for example interactive filtering of flows and services with regular expressions.

Detection of Malware C2 Protocols

Malware authors continually keep coming up with new C2 protocols for defenders to detect. Luckily we don’t need to manually create protocol signatures for CapLoader, we only need a few examples of traffic for a protocol to generate a statistical model that CapLoader can use to detect that protocol. We call this feature Port Independent Protocol Identification (PIPI).

We’ve added support for detecting of the following protocols in this new release of CapLoader:

Malicious protocols detected by CapLoader

Image: Protocols identified in PCAP files with malware traffic from various sandboxes (ANY.RUN, Hybrid-Analysis, Joe Sandbox and Triage)

Our PIPI feature can also detect protocols inside of other protocols, such as Cobalt Strike, DCRat, Emotet, Formbook, Gozi ISFB, GzipLoader and Socks5Systemz which all run on top of HTTP. It is sometimes even possible to identify malicious protocols that use TLS encryption, such as AsyncRAT, Cobalt Strike, Emotet, IcedID or Remcos. However, detection of malicious TLS encrypted protocols is a difficult challenge and might be subject to false positives.

Sharing IOCs to ThreatFox

ThreatFox is a free online service for sharing indicators of compromise (IOCs) from malware. ThreatFox can be queried for a particular malware family, such as RedLine Stealer, and it’ll return a list of URLs, domain names and IP:port pairs used for C2 communication or payload delivery for that malware. You can also query for a domain or IP address to see if it’s a known C2 address of any malware or botnet.

CapLoader has supported OSINT lookup of IP addresses and domains on ThreatFox since the release of version 1.9, but with this release we also add the ability to contribute by sharing IOCs with the infosec community. All you need to do is to enter your ThreatFox API-key in CapLoader’s settings, then right-click a flow, service or alert and select “Submit to ThreatFox”.

Submitting Loda IOC to ThreatFox

Image: Submission of microsoft.net.linkpc[.]net to ThreatFox

If the right-clicked item is an alert for a “Malicious protocol” then CapLoader will automatically populate the Mapledia Name field, as shown in the screenshot (win.loda).

TLS Client Fingerprinting with JA4

John Althouse announced the new JA4+ fingerprint methods a couple of months ago on the FoxIO blog. In short JA4+ is a suite of methods designed to fingerprint implementations of a specific set of protocols, including TLS, HTTP and SSH. As you’ve probably guessed JA4+ is a successor to the JA3 and JA3S hashes that we’ve learned to love (we added JA3 fingerprinting to NetworkMiner in 2019).

Most of the fingerprinting methods in the JA4+ suite are patent pending except for the TLS client fingerprinting method “JA4”, which FoxIO does not have patent claims and is not planning to pursue patent coverage for. We have therefore built a JA4 fingerprinting engine that we’ve included in this CapLoader release. Future releases of NetworkMiner will hopefully also include our JA4 fingerprinting engine.

JA3 and JA4 fingerprints of Remcos traffic. a85be79f7b569f1df5e6087b69deb493 t13i010400_0f2cb44170f4_5c4c70b73fa0 t13i010400_0f2cb44170f4_1b583af8cc09

Image: JA3 and JA4 hashes of Remcos C2 traffic

JA4 is similar to JA3 in many ways, but one essential difference is that JA4 fingerprints are something of a fuzzy hash of the client’s handshake rather than a MD5 hash of the raw fingerprint. JA3’s use of MD5 hashing has received criticism, for example in academic literature, partly due to the inability to see if two JA3 hashes have similar TLS handshakes.

JA4 hash explained. Breakdown of Remcos JA4 hash t13i010400_0f2cb44170f4_5c4c70b73fa0

JA4 does use hashes, but instead of just being one big hash it breaks the fingerprint into three separate sections; where the first section is used in its raw (non-hashed) format and the other two sections are hashed separately. Thus, an update of a TLS implementation, which only adds one additional cipher, will increment the cipher counter in the first section of the JA4 fingerprint by one and the ciphers hash (second section) will get a new value. The hash in the last section will remain intact.

In the previous CapLoader screenshot with Remcos C2 traffic we see TLS handshakes that have the same JA3 hash (a85be79f7b569f1df5e6087b69deb493) but the JA4 fingerprints have different values (t13i010400_0f2cb44170f4_5c4c70b73fa0 and t13i010400_0f2cb44170f4_1b583af8cc09). The reason why the last JA4 section is different even though the JA3 hash is the same is because some of these TLS handshakes present a different set of signature algorithms, which is a parameter that isn't being used in JA3.

Alerts Tab

CapLoader’s Alerts tab now includes more alert types than before and each alert has a severity rating graded as follows:

  • High = 4
  • Medium = 3
  • Low = 2
  • Info = 1

A typical high-severity alert is when a known malicious protocol is detected, while an “Info” type alert can provide a heads up about traffic from things like coin mining or legitimate remote admin tools. As you can see in the screenshot below the alerts are sorted based on severity to make it easier to prioritize them.

Alerts in CapLoader for 2023-10-16-IcedID-infection.pcap

Image: CapLoader alerts for 2023-10-16-IcedID-infection.pcap

Here’s a breakdown of the alerts shown in the CapLoader screenshot above:

All these alerts are indicators of an IcedID infection, including the 5 minute C2 connection interval which I have mentioned before.

Other User Interface Improvements

CapLoader’s “Column Criteria” row filter could previously only be used to filter on columns with a specific value, such as “Protocol = TLS”. This new release of CapLoader additionally allows users to do substring matching with the “contains” keyword and regular expression (regex) matching with the “matching” keyword. In the screenshot below the Column Criteria “Hostname matches \.local$” is used to only show hosts that have a hostname ending with “.local”.

RegEx matching of .local hostnames

We’ve also added an often asked for feature to CapLoader, namely the ability to switch between different flows in the Transcript window.

CapLoader Transcript. Change this number to show next flow

The flows you can switch between depends on how the transcript window was opened. A flow transcript opened from the Flows tab will allow switching between the flows that were visible in the list from where the transcript was opened. A transcript opened from any of the other tabs (Services, Hosts or Alerts), on the other hand, allows switching between the different flows for the particular service, host or alert that was opened.

Credits

I would like to thank Nic Cerny, Trent Healy and Fredrik Ginsberg for their input on various improvements that have been implemented in CapLoader 1.9.6.

Updating to the Latest Release

Users who have already purchased a license for CapLoader can download a free update to version 1.9.6 from our customer portal or by clicking “Check for Updates” in CapLoader’s Help menu.

Posted by Erik Hjelmvik on Wednesday, 15 November 2023 12:08:00 (UTC/GMT)

Tags: #CapLoader#ThreatFox#JA3#JA4#IcedID#GzipLoader#regex

Short URL: https://netresec.com/?b=23B6bcd