NETRESEC Network Security Blog - Tag : carve

rss Google News
,Β 

NetworkMiner 2.7.3 Released

NetworkMiner 2.7.3

NetworkMiner now extracts meterpreter payloads from reverse shells and performs offline lookups of JA3 hashes and TLS certificates. Our commercial tool, NetworkMiner Professional, additionally comes with a packet carver that extracts network packets from memory dumps.

Extraction of Meterpreter Payloads

NetworkMiner 2.7.3 supports extraction of meterpreter DLL payloads from reverse shell TCP sessions deployed with Metasploit. The free version of NetworkMiner will try to extract the meterpreter DLL from TCP sessions going to "poker-hand ports" commonly used for meterpreter sessions, such as 3333, 4444, 5555, etc. The port-independent protocol detection feature available in NetworkMiner Professional additionally enables extraction of meterpreter DLLs regardless which LPORT the attacker specifies when deploying the reverse shell.

Meterpreter DLL extracted from PCAP file in NetworkMiner Professional

Image: Meterpreter DLL extracted from DFIR Madness' case001.pcap

Packet Carving in NetworkMiner Professional

If you try to open anything other than a PCAP, PcapNG or ETL file in NetworkMiner Professional, then you'll be presented with an option to carve packets from the opened file as of this release.

NetworkMiner Unknown Capture File Format

The packet carver can extract packets from any structured or unstructured data, such as memory dumps and proprietary packet capture formats. NetworkMiner Pro's carver is a simplified version of the packet carving feature in CapLoader.

Loading the 1GB "memdump.mem" from Ali Hadi's Challenge #1 - Web Server Case into NetworkMiner Professional takes roughly five seconds, during which 612 packets get extracted.

NetworkMiner Professional with packets extracted from memory dump

Image: Information about network hosts carved from memory dump

In this scenario the memory was dumped on the 192.168.56.101 host, which NetworkMiner identifies as "WIN-L0ZZQ76PMUF". The carved packets also indicate that this computer had an outgoing TCP connection to 192.168.56.102, which appears to be a Linux machine called "kali". As you can see in the screenshot, the packets carved from the memory dump also reveal a great deal about other hosts on the network, such as the 192.168.56.1 host, which seems to be a Windows 7 machine called "IT104-00".

Offline Matching of JA3 and X.509 hashes

NetworkMiner 2.7.3 comes with a local copy of the SSL Certificate and JA3 Fingerprint Blacklists from the awesome abuse.ch project. JA3 hashes and extracted X.509 certificates are matched against these lists in order to see if they are associated with any piece of malware or botnet.

Here's one example showing the default Cobalt Strike certificate being identified as "AKBuilder C&C", since that's how it is listed in abuse.ch's SSL certificate database.

CobaltStrike default X.509 certificate

Image: Cobalt Strike's default certificate identified as "AKBuilder C&C"
PCAP: Cobalt Strike PCAP from malware-traffic-analysis.net

The port-independent protocol detection feature in NetworkMiner Professional additionally enables X.509 certificates to be extracted even from non-standard TLS ports, such as this certificate, which is identified as "BitRAT" with help of the abuse.ch certificate block-list.

NetworkMiner Professional with BitRAT TLS traffic

Image: Both X.509 certificate and JA3 hash identified as BitRAT
PCAP: BitRAT PCAP from Joe Sandbox

The client's JA3 hash 8515076cbbca9dce33151b798f782456 is also associated with BitRAT according to abuse.ch.

DBSBL Lookup Detection

DNSBL services are used by servers handling incoming email to verify that the sender's IP address isn't a known SPAM sender and that it isn't from a network that shouldn't be sending emails.

But DNSBL services can also be used by malware and botnets, such as TrickBot and Emotet, to verify that the public IP of a victim is allowed to send emails and that it hasn't already been blacklisted for sending SPAM. We have therefore decided to add DNSBL lookups to the Host Details section in NetworkMiner 2.7.3.

DNSBL lookups in NetworkMiner

Image: TrickBot victim checks if its public IP is blocked by DNSBL services
PCAP: TrickBot PCAP from malware-traffic-analysis.net

DNSBL lookups are also logged to the "Parameters" tab of NetworkMiner.

NetworkMiner with DNSBL parameters

Image: NetworkMiner's Parameters tab with "DNSBL" filter
PCAP: TrickBot PCAP from malware-traffic-analysis.net

Additional Features and Updates

We'd also like to mention some additional new features, bug fixes and improvements that have been included in this new release.

  • Support for HTTP CONNECT request method to extract artifacts like X.509 certificates and JA3 hashes from HTTPS traffic passing through a web proxy.
  • Traffic to TCP ports 3000 and 8000 are now configured to be parsed as HTTP by default in order to handle WEBrick traffic.
  • Improved extraction of SMTP credentials.
  • JA3 hashes were previously incorrect for clients that supported more than one EC point format (RFC 8422). This has now been fixed.
  • Support for SLL2 (Linux cooked capture v2) frames.
  • Improved handling of concurrent GUI events, for example when poking around in the "Hosts" tab while loading a PCAP file or doing live sniffing.
  • NetworkMiner's GUI no longer reloads between each PCAP file when multiple files are loaded at once.

New Features in NetworkMiner Professional

We have also added a few new features exclusively to NetworkMiner Professional, which is the commercial version of NetworkMiner. Apart from the packet carver feature, mentioned earlier in this blog post, we've also updated the collection of OSINT lookup services available in the GUI. One of the newly added services is Ryan Benson's unfurl, which picks apart URLs to reveal data that might have been encoded into a complex URL. The unfurl lookup can be found by right-clicking an URL in NetworkMiner Professional's "Browsers" tab and selecting the "Lookup URL" sub menu.

Other OSINT services that we've added are FileScan.IO and JoeSandbox lookups of extracted files. These lookups can be performed by right clicking a file in the "Files" tab and opening the sub-menu called "Lookup Hash".

Lookup of file hash on JoeSandbox

Image: OSINT lookup of an EXE file extracted from network traffic

The command-line version of NetworkMiner Professional, NetworkMinerCLI, has also been updated to allow extracted information to be printed directly on standard output instead of logging everything to files. Here is an example showing this feature while running NetworkMinerCLI in Linux (with help of Mono):

mono /opt/NetworkMinerProfessional_2-7-3/NetworkMinerCLI.exe -r 2022-03-14-Qakbot-with-Cobalt-Strike-and-VNC-module.pcap -w /tmp/malware -X FileInfos | cut -d, -f 5,9
"s2Fmok83x.zip.html","ba2ef33c7aef593f95d261b6f4406b39"
"nexus.officeapps.live.com.cer","373ccffe30d3477867642abab723a351"
"Microsoft RSA TLS CA 01.cer","806f1c72f6d67c9c114eff43d3d84100"
"nexusrules.officeapps.live.c.cer","4c08442740cb020d457a5df16be406ff"
"Microsoft RSA TLS CA 02.cer","65d17ecae5798c79db8e840fe98a53b9"
"6537991.dat.exe","124207bc9c64e20e114bcaeabde12a4e"
"6537991.dat.exe","ca7ef367c935182a40a95b9ad8b95f42"
"6537991.dat.exe","a9a8366fa6be54b45ca04192ca217b75"
[...]

The command above extracts files from a PCAP file, which contains traffic from a Windows PC infected with Qbot. The "-w" switch specifies the output directory for the files extracted from network traffic, and the "-X FileInfos" specifies that metadata for these files should be sent to STDOUT instead of being written to log files. The cut utility was used to show only the filename (column 5) and MD5 hash (column 9) of the file info output.

The MD5 hashes of the extracted files confirm that this is indeed a Qbot infection:

  • 124207bc9c64e20e114bcaeabde12a4e (VT)
  • ca7ef367c935182a40a95b9ad8b95f42 (VT)
  • a9a8366fa6be54b45ca04192ca217b75 (VT)

NetworkMinerCLI previously printed some information about the parsing process to STDOUT. That output has now been moved to STDERR in order to provide the "-X [type]" output with exclusive access to STDOUT.

Credits

We'd like to thank Michael Taggart for noticing that NetworkMiner previously failed to parse HTTP traffic to ports 3000 and 8000.

Upgrading to Version 2.7.3

Users who have purchased NetworkMiner Professional can download a free update to version 2.7.3 from our customer portal, or use the β€œHelp > Check for Updates” feature. Those who instead prefer to use the free and open source version can grab the latest version of NetworkMiner from the official NetworkMiner page.

Posted by Erik Hjelmvik on Monday, 04 April 2022 06:52:00 (UTC/GMT)

Tags: #NetworkMiner​ #carve​ #JA3​ #X.509​ #CobaltStrike​ #Cobalt Strike​ #TrickBot​ #Emotet​ #PIPI​ #Protocol Detection​ #OSINT​ #NetworkMinerCLI​

Share: Facebook Β  Twitter Β  Reddit Β  Hacker News Short URL: https://netresec.com/?b=22479d5

,Β 

Carving Packets from Memory

The packets are in the router

Someone who says "We're gonna pull the packet captures out of the router" probably has no clue how to capture network traffic. In the Lindell case, statements like these were results of an elaborate hoax.

Nevertheless, such a statement doesn't have to be nonsense β€” if it comes from someone who knows how to dump the physical memory from the router. There are actually more packets available in the RAM of a router, or computer for that matter, than you might think.

The Forensic Challenge from DFRWS 2016 contains a memory dump from an SDN switch. If you drag-and-drop SDN.ram.raw from that challenge to CapLoader then you'll be asked if you wanna carve packets from the memory dump.

CapLoader error message - Invalid capture file

This packet carving feature is also available in the free trial version of CapLoader.

Clicking "Yes" in the dialogue brings up a configuration window. The default settings are okay in most cases.

CapLoader's Carve Packets Window

After pressing "Start" CapLoader will start identifying packets in the memory dump from the SDN switch. The packets will be saved to a Pcap-NG file located in the %TEMP% directory, unless you specified a different output location in the config window.

You can download a copy of the Pcap-NG file that I generated with CapLoader 1.9.2 here:
https://www.netresec.com/files/SDN.ram.raw.pcapng (661 kB, 2959 packets)

Here's what it looks like when the carved packets have been loaded into NetworkMiner Professional.

NetworkMiner Professional with SDN.ram.raw.pcapng loaded

As you can see, a great deal of information can be extracted about the hosts on this network just by examining the dumped memory from the SDN switch.

What about Bulk Extractor?

Simson Garfinkel's bulk_extractor can also extract packets from memory dumps. It was actually a research paper by Simson that inspired me to implement a packet carver in the first place.

There are a few significant differences between bulk_extractor and CapLoader with regards to packet carving though. One difference is that bulk_extractor identifies network packets by looking for Ethernet frames containing IPv4 packets, while CapLoader looks for IPv4 or IPv6 packets containing TCP or UDP packets. The output from bulk_extractor is usually quite similar to that of CapLoader, and so is the parsing speed. CapLoader was just slightly faster in our tests and carved about 3% more packets compared to bulk_extractor, these additional packets were primarily IPv6 packets and packets that weren't encapsulated by an Ethernet frame.

Where can I download memory dumps?

I posted a question on Twitter, asking the #DFIR community for their favorite publicly available memory dumps prior to writing this blog post, and I received lots of great answers. Thank you all for contributing! I have now compiled the following list of places from where you can download memory dumps:

For a more detailed blog post on CapLoader's packet carving functionality, please see our Carving Network Packets from Memory Dump Files blog post from 2014.

Posted by Erik Hjelmvik on Tuesday, 31 August 2021 15:10:00 (UTC/GMT)

Tags: #Forensics​ #RAM​ #PCAP​ #Pcap-NG​ #PcapNG​ #DFIR​ #carve​ #carver​ #packets​ #dump​ #CapLoader​ #memory forensics​ #DFRWS​

Share: Facebook Β  Twitter Β  Reddit Β  Hacker News Short URL: https://netresec.com/?b=218cf94

,Β 

Carving Network Packets from Memory Dump Files

Hattori Hanzo by Stefan Ledwina A new feature in the recently released CapLoader 1.2 is the ability to carve network packets from any file and save them in the PCAP-NG format. This fusion between memory forensics and network forensics makes it possible to extract sent and received IP frames, with complete payload, from RAM dumps as well as from raw disk images.

CapLoader will basically carve any TCP or UDP packet that is preceded by an IP frame (both IPv4 and IPv6 are supported), and believe me; there are quite a few such packets in a normal memory image!

We've made the packet carver feature available in the free version of CapLoader, so feel free to give it a try!

The packet carving feature makes it possible do much better analysis of network traffic in memory dumps compared to Volatility's connscan2. With Volatility you basically get the IP addresses and port numbers that communicated, but with CapLoader's packet carver you also get the contents of the communication!

Modern depiction of ninja with ninjato (ninja sword), Edo wonderland, Japan

EXAMPLE: Honeynet Banking Troubles Image

I loaded the publicly available β€œBanking Troubles” memory image from the Honeynet Project into CapLoader to exemplify the packet carver's usefulness in a digital forensics / incident response (DFIR) scenario.

CapLoader 1.2 Carving Packets from HoneyNet Memory Image
CapLoader 1.2 Carving Packets from HoneyNet Memory Image

CapLoader 1.2 Finished Carving Packets from HoneyNet Memory Image
22 TCP/UDP Flows were carved from the memory image by CapLoader

Let's look at the network traffic information that was extracted in the Honeynet Project's own solution for the Banking Troubles Challenge:

python volatility connscan2 -f images/hn_forensics.vmem"
Local Address Remote Address Pid
192.168.0.176:1176 212.150.164.203:80 888
192.168.0.176:1189 192.168.0.1:9393 1244
192.168.0.176:2869 192.168.0.1:30379 1244
192.168.0.176:2869 192.168.0.1:30380 4
0.0.0.0:0 80.206.204.129:0 0
127.0.0.1:1168 127.0.0.1:1169 888
192.168.0.176:1172 66.249.91.104:80 888
127.0.0.1:1169 127.0.0.1:1168 888
192.168.0.176:1171 66.249.90.104:80 888
192.168.0.176:1178 212.150.164.203:80 1752
192.168.0.176:1184 193.104.22.71:80 880
192.168.0.176:1185 193.104.22.71:80 880

[...]

"This connection [marked in bold above] was opened by AcroRd32.exe (PID 1752) and this represents an additional clue that an Adobe Reader exploit was used in order to download and execute a malware sample."

The solution doesn't provide any evidence regarding what Acrobat Reader actually used the TCP connection for. Additionally, none of the three finalists managed to prove what was sent over this connection.

To view the payload of this TCP connection in CapLoader, I simply right-clicked the corresponding row and selected β€œFlow Transcript”.

Transcript of TCP flow contents in CapLoader
Transcript of TCP flow contents (much like Wireshark's Follow-TCP-Stream)

We can see that the following was sent from 192.168.0.176 to 212.150.164.203:

GET /load.php?a=a&st=Internet%20Explorer%206.0&e=2 HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)
Host: search-network-plus.com
Connection: Keep-Alive

Notice that the HTTP GET request took place at the end of the TCP session. Odd? Well, CapLoader doesn't know the timestamp of carved packets, so they are simply ordered as they were discovered in the dump file. The timestamp generated for each carved packet represents where in the image/dump the packet was found. Or more precise: the number of microseconds since EPOCH (1970-01-01 00:00:00) is the offset (in bytes) from where the packet was carved.

Hence, we know that the HTTP GET request can be found between offset 37068800 and 37507072 in the image (a 428 kB region). To be more exact we can open the generated PcapNG file with Wireshark or Tshark to get the timestamp and length of the actual HTTP GET request packet.

tshark.exe -r Bob.vmem.pcapng" -R http.request -T fields -e frame.time_epoch -e frame.len -e http.request.uri
31.900664000 175 *
37.457920000 175 *
37.462016000 286 /load.php?a=a&st=Internet%20Explorer%206.0&e=2
37.509120000 175 *
37.519360000 245 /~produkt/983745213424/34650798253
37.552128000 266 /root.sxml
37.570560000 265 /l3fw.xml
37.591040000 274 /WANCommonIFC1.xml
37.607424000 271 /WANIPConn1.xml

Now, lets verify that the raw packet data is actually 37462016 bytes into the memory dump.

xxd -s 37462016 -l 286 Bob.vmem
23ba000: 0021 9101 b248 000c 2920 d71e 0800 4500 .!...H..) ....E.
23ba010: 0110 3113 4000 8006 8e1a c0a8 00b0 d496 ..1.@...........
23ba020: a4cb 049a 0050 7799 0550 f33b 7886 5018 .....Pw..P.;x.P.
23ba030: faf0 227e 0000 4745 5420 2f6c 6f61 642e .."~..GET /load.
23ba040: 7068 703f 613d 6126 7374 3d49 6e74 6572 php?a=a&st=Inter
23ba050: 6e65 7425 3230 4578 706c 6f72 6572 2532 net%20Explorer%2
23ba060: 3036 2e30 2665 3d32 2048 5454 502f 312e 06.0&e=2 HTTP/1.
23ba070: 310d 0a41 6363 6570 743a 202a 2f2a 0d0a 1..Accept: */*..
23ba080: 4163 6365 7074 2d45 6e63 6f64 696e 673a Accept-Encoding:
23ba090: 2067 7a69 702c 2064 6566 6c61 7465 0d0a gzip, deflate..
23ba0a0: 5573 6572 2d41 6765 6e74 3a20 4d6f 7a69 User-Agent: Mozi
23ba0b0: 6c6c 612f 342e 3020 2863 6f6d 7061 7469 lla/4.0 (compati
23ba0c0: 626c 653b 204d 5349 4520 362e 303b 2057 ble; MSIE 6.0; W
23ba0d0: 696e 646f 7773 204e 5420 352e 313b 2053 indows NT 5.1; S
23ba0e0: 5631 290d 0a48 6f73 743a 2073 6561 7263 V1)..Host: searc
23ba0f0: 682d 6e65 7477 6f72 6b2d 706c 7573 2e63 h-network-plus.c
23ba100: 6f6d 0d0a 436f 6e6e 6563 7469 6f6e 3a20 om..Connection:
23ba110: 4b65 6570 2d41 6c69 7665 0d0a 0d0a Keep-Alive....
Yep, that's our HTTP GET packet preceded by an Ethernet, IP and TCP header.

Ninja Training by Danny Choo

Give it a Try!

Wanna verify the packet carving functionality? Well, that's easy! Just follow these three steps:

  1. Download a sample memory image (thanks for the great resource Volatility Team!)
    Β OR
    Download the free RAM dumper DumpIt and dump your own computer's memory.
    Β OR
    Locate an existing file that already contains parts of your RAM, such as pagefile.sys or hiberfil.sys

  2. Download the free version of CapLoader and open the memory dump.

  3. Select destination for the generated PcapNG file with carved packets and hit the β€œCarve” button!

Illangam fighting scene with swords and shields at korathota angampora tradition

Carving Packets from Proprietary and odd Capture Formats

CapLoader can parse PCAP and PcapNG files, which are the two most widely used packet capture formats. However, the packet carving features makes it possible to extract packets from pretty much any capture format, including proprietary ones. The drawback is that timestamp information will be lost.

We have successfully verified that CapLoader can carve packets from the following network packet capture / network trace file formats:

  • .ETL files created with netsh or logman. These Event Trace Log files can be created without having WinPcap installed.
  • .CAP files created with Microsoft Network Monitor
  • .ENC files (NA Sniffer) from IBM ISS products like the Proventia IPS (as well as Robert Graham's old BlackICE)
  • .ERF files from Endace probes

Posted by Erik Hjelmvik on Monday, 17 March 2014 10:05:00 (UTC/GMT)

Tags: #Netresec​ #PCAP​ #carve​ #carver​ #packets​ #RAM​ #memory​ #dump​ #forensics​ #DFIR​ #CapLoader​ #memory forensics​ #PcapNG​

Share: Facebook Β  Twitter Β  Reddit Β  Hacker News Short URL: https://netresec.com/?b=143B7EE

Mastodon

NETRESEC on Mastodon: @netresec@infosec.exchange

twitter

NETRESEC on Twitter: @netresec